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Background

 Widespread applications of Lithium-ion
battery energy storage systems

 Battery degradation is inevitable, which
leads to capacity and power decrease

e State-of-health (SOH) estimation is a crucial

function of battery management system NCA Conté
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Introduction

Data-Driven methods for Lithium-ion battery SOH estimation
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Challenges brought by random partial discharging curves
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the discharging curve of each cycle starts and ends at random
voltages, so it is impossible to predefine a voltage window
that is consistently covered by all cycles for HI extraction
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Existing problems of data-driven methods:

e Data-driven methods often extract Hls from
predefined voltage windows, which fail during
random partial discharging process

e Existing unscaled health indicator (HI) is sensitive to
cell-to-cell variation

Solution — a new ensemble learning method is proposed

e Scaled Hl is extracted to alleviate the negative
impact of cell-to-cell variation on SOH estimation

e Multiple Gaussian process regression (GPR) based
SOH estimator are constructed over different
voltage windows

e SOH is estimated by aggregating estimators within
actual discharging voltage range via product of
experts (PoE) method
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Framework of the proposed method
Offline stage: offline stage online stage
. Collect complete di schargin g curves ) complete discharging curve T:'mdom partial discharging curve
e Split each curve into M segments
. Extract scaled HI from each segment E é
e  Construct an individual GPR-based SOH _
_ voltage ] voltage
estimator for each segment | |
v ' v '
l-stsegment -~ M-th segment p-th segment .- g-th segment
Online stage: 1 1 1 l
g . HI tion -~  HI extracti —» g '
. Collect a random partial discharging curve extac o S segment mofﬂ matching
ltrammg ltrammg
e Activate GPR models within the partial curve e p-thto q'mthwaR models
via segment-model matching SOH r fi(HD o =|f v (HI) PoE based ensemble-model fusion
o Estimate SOH by aggregating activated GPR B esﬁmattd SoH

models via PoE
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Online ensemble-model fusion
Scaled HI extraction Activate g-p+1 GPR models Aggregate g-p+1 GPR models
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p-th GPR: P(SOH|D,) = N (up, o)
D, training data of II)—th GPR
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Estimated SOH: Uncertainty: o,

Product of experts (PoE):
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P(SOH|D) = N'(u,0%)
D = {D;}{_,: training data of

Hl, = AQq/AQ}I, AQ, = IAt,
AQi1 (i=p,...,q) is the charging
capacity AQ; at 1-th cycle

D, training data of cll—th GPR

v v
Estimated SOH: y, Uncertainty: o¢

Decrease the weights of SOH
estimates with great uncertainty
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voltage — Dy, : training data of 1|<—th GPR : Lo=p :

H.Ip = AQ,/AQ;, AQ, = IAt, Estimate(; SOH: uy, Uncerta*inty: o : Final SOH estimate: y = Zlflzp o
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Results

Case 1: comparison with R? based multi-model fusion

Table. 1 Comparison of mean RMSE across testing batteries
methods Oxford data NASA data True SOH R? based multi-model fusion
Proposed method — — — Proposed method with unscaled HI
proposed method 0.72% 1.25% (a) Oxford dataset-Cell5 (b) NASA dataset-B0006
100 ! 0o, NS .
R? based multi-model fusion 1.10% 1.64% N o5 | ‘»\‘/\ "N
. — | . A \ [\
e The proposed method achieves 35% and 24% S S ANV
jas I jast \ \ |
lower mean RMSE on two datasets 3 2 st %\ i
85 -
80 +
Case 2: comparison with unscaled HI 80 ' ' ' ' ' _
0 1466 2033 4400 0 1966 3933 5900
Table. 2 Comparison of mean, standard deviation Cycles Cycles
(std), and maximum of RMSE across testing batteries = 2-5[ =67 .
= = |
Oxford data NASA data § 2 § i' ,,'\' ! ,:"\\ i
— — r r 1 \y v \\ \’
methods mean std max  mean std max ; Lo 3 , ! 1“, L “:'l v
= o1 SNIRY ! Yy 1l
proposed HI 0.72% 0.29% 1.30% 1.25% 0.03% 1.28% 205” h,’v'\v"‘—‘ ;2 L/ e
= U r \\ e /\/ 3 1 (' 14
unscaled HI  091% 0.57% 191% 2.16% 1.35% 3.71% 2 L SARY . - . . .
0 1466 2933 4400 0 1966 3933 5900
e The proposed HI achieves 21% and 42% lower mean Cycles Cycles
RMSE on two datasets SOH estimation results on Oxford dataset (a) and NASA dataset (b)
o The proposed HI achieves more consistent estimation,
demonstrated by smaller std and maximum of RMSE




Conclusions

Conclusions:

e This paper proposes a new ensemble learning
method to estimate SOH from random partial
discharging curves.

e Ascaled Hl is proposed to effectively reduce the
negative impact of cell-to-cell variation on SOH
estimation.

Future work:

e The future research aims to extend the proposed
method to dynamic working conditions,
necessitating extracting reliable HI from dynamic
working conditions.
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